MATHEMATICS APPLICATIONS

MAWA Semester 1 (Unit 3) Examination 2020

Calculator-Assumed

Marking Key

© MAWA, 2019

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is 12th June.

<u>(104 Marks)</u> (4 marks)

Question 7

(2 marks)

Question 7 (a)

The account grew to more than \$10000 in the 9 th year. The balance in the year just before was \$9995.06. $ext{ balance in the year just before was $000 \\ ext{ balance in th$			
Marking key/mathematical behaviours	Marks		
 indicates method used, such as stating the sequence applied states the correct year and balance requested. 			

Question 7 (b)

Solutio	n				
At the 18 th anniversary, the account balance is \$24174.82. Withdrawal of \$15000, leaves \$9174.82 in the account. Seven years later the balance will be \$17550.96. (\$18550.96 - \$1000).	Control Co	bn 11684. 12988. 14326. 15698. 17106. 18551. ▼			
Marking key/mathematical behaviours					
 indicates method used, such as stating the new sequence applied states the correct balance on the 25th anniversary. 					

Question 8

(10 marks)

(3	marks)
· -	

Solution					
The sequence is a GP, so $T_n = ar^{n-1} \Rightarrow \frac{T_{10}}{T_4} = \frac{ar^9}{ar^3} = 64$					
$\Rightarrow r^6 = 64 \Rightarrow r = \pm 2$					
∴ The first four terms are either 1.6,3.2,6.4,12.8 or, 1.6, -3.2, 6.4, -12.8.					
Marking key/mathematical behaviours	Marks				
• determines $r = 2$	1				
• determines $r = \pm 2$	1				
 states both sets of the first four terms (follow through if only states 					
r = 2, that is, the correct terms of the positive sequence is awarded 2 marks total)					

Question 8 (b)

(3 marks)

Solution	
$n = 0, T_2 = T_1 - \frac{3(0)}{2} = 8 - 0 = 8$	
$n = 1, T_3 = T_2 - \frac{3(1)}{2} = 8 - 1.5 = 6.5$	
$n = 2, T_4 = T_3 - \frac{3(2)}{2} = 6.5 - 3 = 3.5$	
\therefore the first four terms are 8, 8, 6.5, 3.5	
Marking key/mathematical behaviours	Marks
• determines $T_2 = 8$	1
 determines terms 3 and 4 correctly states the correct first 4 terms 	1 1

Question 8 (c)

(4 marks)

			S	olution			
(i)							
	n	1	2	3	4	5	6
	T_n	2800	3000	3214	3444	3690	3953
2	T_1 and T_2 and	re given.					
	$T_3 = T_2 \left(\frac{T_2}{T_1}\right)$	$=3\times\left(\frac{3}{2.8}\right)=$	= 3214 (rour	nded to nea	rest metre)		
	etc. or using	J CAS					
	$ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 36 \end{bmatrix} $	▼ P [™] Žan an					
(ii)		valked 2800	-		AS coroon th	ia will be on	the 12 th day
		ogram. $T_{12}=$		e from the C	AS screen tr	iis will de on	the 12 th day
	 ➡ Edit Grs ➡ Edit Grs ■ an+z=an+1*3 n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5980.7202 Deg Real 	M Image: Figure 1 Image: Figure 1 <thimage: 1<="" figure="" th=""> Image: Figure 1</thimage:>					
		Marking ke	y/mathemat	ical behaviou	urs		Marks
•	completes	T_1 , T_2 and T_3	correctly				1
•			e table corre	ctly (and rou	nds correctly	()	1+1 1
•	states the 1	∠ uay.					I

Question 9

Question 9 (a)

(10 marks)

(4 marks)

	Solution						
(i)	The explanatory variable is Area						
(ii)	Whilst the Percentage Representation by Children across Areas is simila						
	Population of WA (26%,27%) there is a marked increase in the Percenta	•					
	Representation by Children using aquatic centres in Regional areas (52%	6) compared					
(:::)	with Metropolitan areas (28%)	roculting in					
(iii)	Regional centres may have less facilities/opportunities for other activities Aquatic Centres being more readily used.	resulting in					
	Many Regional Centres are located inland whereas many Metropolitan C	entres					
	would be coastal. Those living in coastal areas may frequent the beach instead of						
	Aquatic Centres resulting in higher % representation in Regional centres.						
	Other plausible reason and explanation.						
	Marking key/Mathematical behaviours	Marks					
(i)							
•	states Area	1					
(ii)							
•	states similarity in distribution of population across Areas of the state	1					
•	notes marked difference between Metropolitan and Regional areas for	1					
	Patronage by Children						
(iii)							
•	states a plausible reason with explanation	1					

Question 9 (b)

(6 marks)

			S	olution			
(i)	$\frac{12}{36} \times 10$	00% ≈ 33%					
(ii)			Type 1	Type 2	Туре 3		
		Regional	62%	30%	8%	-	
		Metropolitan	42%	33%	25%		
(iii)		or both Regional	and Metropoli		ron decrease. Th		
(1)		Marking ke	y/Mathematic	al behaviours		Marks	
(i) •		correct numerato	-			1 1	
•	shows of	correct denomina	tor and calculation	ates percentage			
(ii)						1	
•	correctl	y calculates one	Regional Perc	entage		1	
•	correctly calculates three percentages						
(iii)							
•	identifie	s a relevant asso	ociation			1	
•	explains	s the association	in context			1	

Question 10

Question 10 (a) (i)

(14 marks)

(3 marks)

						Soluti	ion	
A B C D F	A 0 1 1 0 0 1	B 1 0 1 0 1	C 1 1 0 1 0	D 0 1 0 1	E 0 0 1 0 1	F 1 0 1 1 0		
			Marki	ng key/	mathem	natical	behaviours	Marks
	• use	s the co	orrect di	mensio	ns for th	ne mati	rix	1
• completes the matrix with '0's and '1's and has most entries correct							1	
	completes all entries correctly							

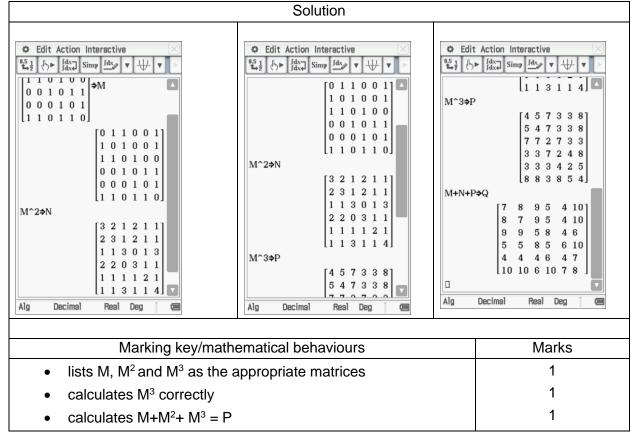
Question 10 (a) (ii)

	Solution							
	А	В	С	D	Е	F	Edit Action Interactive	
А	3	2	1	2	1	1	$ \begin{array}{c} 0.5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ $	
В	2	3	1	2	1	1	1 1 0 1 0 0 0 0 1 0 1 1 1 →M	
С	1	1	3	0	1	3		
D	2	2	0	3	1	1		
Е	1	1	1	1	2	1	101001	
F	1	1	3	1	1	4	$\begin{array}{c} 1 \ 1 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \end{array}$	
							0 0 0 1 0 1	
							[1 1 0 1 1 0] M^2⇒N	
							2 3 1 2 1 1	
							$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
							1 1 1 1 2 1	
							[1 1 3 1 1 4] Alg Decimal Real Deg	
Marking key/mathematical behaviours						Marks		
					ivialKS			
clearly sets out the new 6x6 matrix					1			
	• corr	ectly co	mplete	s the m	atrix			1

Questions 10 (a) (iii)

Solution				
Cells M ² (3,4) and M ² (4,3) both have a value equal to zero				
Cells $M^2(3,4)$ and $M^2(4,3)=0 \Longrightarrow$ that it is not possible to fly to or from cities C and one other city.	D via just			
Marking key/mathematical behaviours	Marks			

- identifies the two cells in M² •
- explains clearly that $M^{2}(3,4)$ and $M^{2}(4,3)=0$ implies no two leg flights •


Questions 10 (a) (iv)

Solution	
Cells M(3,4) and M(4,3) both have a value equal to one	
$M(3,4)$ and $M(4,3) = 1 \implies$ there are direct flights between cities C and D	
Marking key/mathematical behaviours	Marks
 states the values of the two cells in M 	1
 explains clearly that M(3,4) and M(4,3) = 1 implies a direct flight 	1

Question 10 (b)(i)

Page 7

(3 marks)

(2 marks)

1

1

Question 10 (b)(ii)

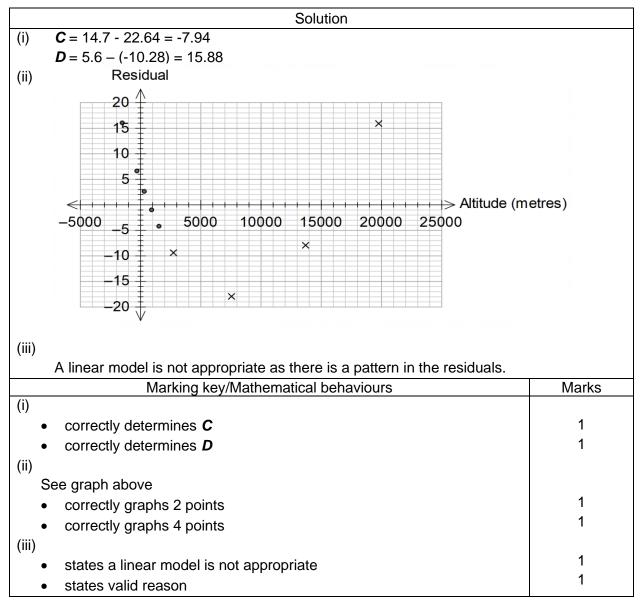
CALCULATOR-ASSUMED
MARKING KEY

(2 marks)

(14 marks)

(8 marks)

Solution	
(ii) Total = 7+7+5+5+4+8 =32	
Marking key/mathematical behaviours	Marks
 lists the elements of the leading diagonal of matrix P 	1
 calculates the sum of these elements 	1


Question 11

Question 11 (a)

Solution		
(i)		
y = -0.0054x + 96.7087		
(ii)		
$x = -305, y = -0.0054 \times (-305) + 96.7087 \approx 98.36$		
$x = 13716, y = -0.0054 \times 13716 + 96.7087 \approx 22.64$		
(iii)		
y intercept is 96.7087 and this represents atmospheric pressure at sea le	vel	
(iv)		
$r^2 = 0.9218$ hence 92.18% of the variation in Atmospheric Pressure can	be explained	
by the variation in Altitude.		
Marking key/Mathematical behaviours	Marks	
(i)		
states correct linear equation	1	
states <i>y</i> intercept correct to 4 decimal places	1	
states gradient correct to 4 decimal places	1	
(ii)	1	
states correct value for A	1	
states correct value for <i>B</i>	I	
(iii)	1	
states y intercept	1	
relates value to sea level		
(iv)		
states correct value	1	

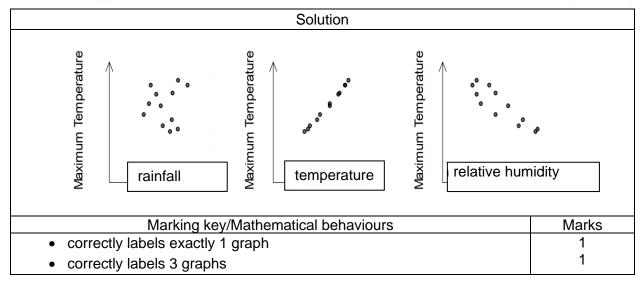
Question 11 (b)

(6 marks)

Question 12

(12 marks)

Question 12(a)


2 11101 KSj

(1 mark)

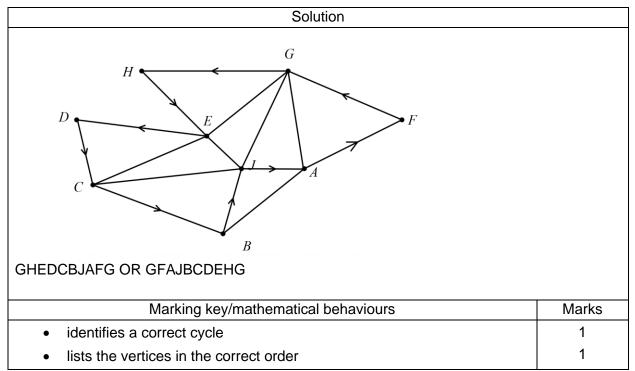
Solution		
Generally as the humidity increases the Maximum temperature decreases. There is a		
negative relationship.		
Marking key/Mathematical behaviours	Marks	
describes the relationship or states that it is negative	1	

Question12 (b)

(2 marks)

Question 12 (c)

(9 marks)


Solution		
 (i) Yes. From the table and the scatter plot it is likely to be a good predictor of the maximum temperature as there is a strong correlation between the two. (ii) 		
$x = 12, y = 1.0326 \times 12 + 0.2830 \approx 12.7^{\circ}$		
This is an unreliable prediction as it involves extrapolation (iii)		
$r = \sqrt{0.9994} = 0.999699 \approx 0.9997$		
There is a strong positive relationship between 3pm temperature and Maximum temperature. (iv)		
Since the equation is $y = 1.0326x + 0.2830$ every 1 degree increase in 3pm		
temperature results in a 1.0326° increase in the Maximum temperature. Hence	e the	
expected difference will be $15 \times 1.0326^{\circ} = 15.489^{\circ} \approx 15.5^{\circ}$		
Marking key/Mathematical behaviours	Marks	
(i)	1	
states yes	1	
 gives an explaination using the data 	1	
 (ii) substitutes x = 12 and states answer to 1 decimal place 	1	
 states unreliable 	1	
states extrapolation	1	
(iii)		
 states correlation coefficient to at least 4 decimal places 		
 identifies strong and positive relationship 	1	
(iv)	1	
• uses 1.0326°		
 states correct answer to 1 decimal place 	1 1	

Question 13

Question 13 (a)

(6 marks)

(2 marks)

Question 13 (b)

(2 marks)

Solution	
EG, AG, JG, CE, AB, JE and JC	
Marking key/mathematical behaviours	Marks
 gives a list of appropriate edges mostly correct 	1
identifies all edges correctly	1

Question 13 (c)

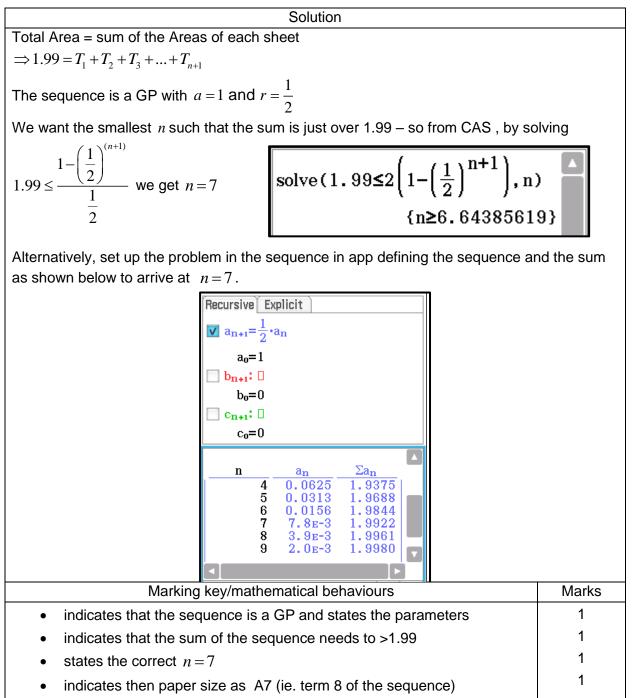
CBJAFGHEDC OR CDEHGFAJBC	
Marking key/mathematical behaviours	Marks
identifies a correct cycle	1
 lists the vertices in the correct order 	1

Question 14

(7 marks)

Question 14 (a)

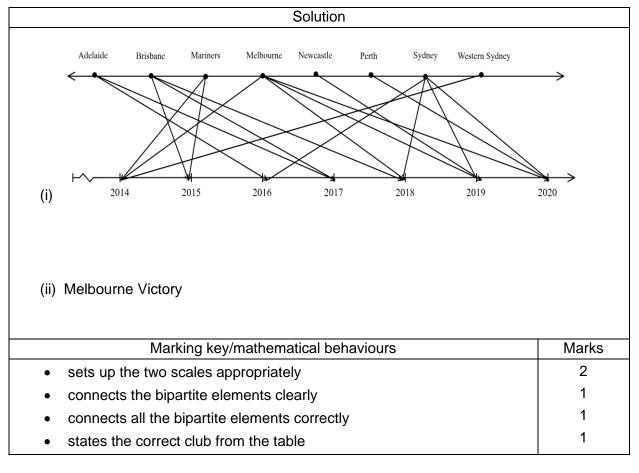
(1 mark)


Solution	
$T_1 = Area(A0) = 1$	
$T_2 = Area(A1) = \frac{1}{2} \times T_1 = \frac{1}{2}$	
$T_3 = Area(A2) = \frac{1}{2} \times T_2 = \frac{1}{4}$	
Marking key/mathematical behaviours	Marks
determines the first 3 terms	1

Question 14 (b)

Solution	
$T_n = \frac{1}{2} \times T_{n-1}, \ T_1 = 1$	
Marking key/mathematical behaviours	Marks
states the correct recursive rule	1
• specifies $T_1 = 1$	1

Question 14 (c)


(4 marks)

Question 15

(8 marks)

Question 15 (a)

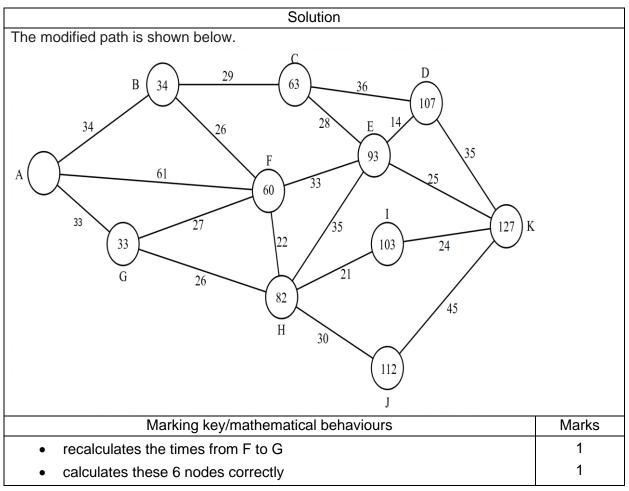
Question 15 (b)

(3 marks)

Solu	ution	
Let Matrix M have dimension $n \times n$ \Leftrightarrow number of cells = n^2 Since the number of games =110 $\Rightarrow n^2 = 110 + 11 \Rightarrow n = 11$ teams $\begin{bmatrix} (1,1)(1,11) \\ (2,1)(2,11) \\ (10,1)(10,11) \\ (11,1)(11,11) \end{bmatrix}$	Alternate method: 11 teams each must play 10 othe home which implies 110 matches	
Marking key/mathematica	l behaviours	Marks
uses appropriate logic		1
clearly states the reasoning		1
calculates the correct number		1

Question 16

(8 marks)


Question 16 (a)

(4 marks)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
AGHIK = 104 minutes Marking key/mathematical behaviours	Marks
Completes the algorithm by filling in values at the nodes	1
	1
Calculates at least 5 nodes correctly	1
Calculates all 9 nodes correctly	1
States the correct path	1

Question 16 (b)(i)

(2 marks)

Question 16 (b)(ii)

(2 marks) Solution Modified path = AFHIK Time = 127 minutes Marks Marking key/mathematical behaviours 1 States the new path accurately • 1 States the new time accurately •

Question 17

Question 17 (a)

(11 marks)

(1	mark)
----	-------

(4 marks)

Depreciation amount will be 2.5% of \$160000 = \$4000 pa.				
Marking key/mathematical behaviours	Marks			
calculates the correct depreciation	1			

Question 17 (b)

	Solution						
Itomo	Original	Depreciation	Depreciation	Depreciation			
Items	Value	rate pa	in 1 st year	in 2 nd year			
Carpets and floor coverings	\$9500	10%	\$950	\$855			
Hot water system	\$2000	12%	\$240	\$211.20			
Light fittings and window treatments	\$7500	15%	\$1125	\$956.25			
Airconditioning system	\$6500	20%	\$1300	\$1040			
Carpets: \$9500×10% = \$950	3 , 1						
Light Fittings:							
First year: \$7500×15% = \$1125							
First year: \$7500-\$1125 = \$63'	75 ∴ Dep = \$63	375×15% = \$95	6.30				
Air conditioners: $(\$6500 - \$1300)$	\ × 20% - \$1040	h					
Air conditioners: $(\$6500 - \$1300) \times 20\% = \$1040$							
Alternatively, use a spreadsheet	traatmanta hak						
eg. For Light fittings and window treatments below.							
A B C	D						
	a ResidVal						
2 7500 0.15 112	25 6375						
3 6375 0.15 956.	3 5418.75						
4 5419. 0.15 812.	8 4605.94						
5				Marks			
Marking key/mathematical behaviours							
 indicating how to calculate depreciation for first year 							
 calculating both first year depreciations correctly 							
 indicating how to calculate 	1						
 calculating both second year depreciations correctly 							

Question 17 (c)

Solution						
The depreciation allowed in the tenth year is \$260.60.						
Use a spreadsheet on CAS as shown below						
1 OrigVal Dep% DepVa ResidVal						
2 7500 0.15 1125 6375						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
4 5419. 0.15 812.8 4605.94						
5 4606. 0.15 690.9 3915.05						
6 3915. 0.15 587.3 3327.79						
7 3328. 0.15 499.2 2828.62						
8 2829. 0.15 424.3 2404.33						
$9 2404. 0.15 \ 360.6 \ 2043.68$						
10 2044. 0.15 306.6 1737.13						
$11 1737. 0.15 \\ \hline 260.6 \\ 1476.56 \\ \hline$						
Marking key/mathematical behaviours	Marks					
shows evidence of applying the diminishing value method correctly	1					
determines the correct answer	1					